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Abstract 
 
Investigations on the relations between the phase angle of the acoustic impedance at the driver piston and the system 

performance of a standing wave thermoacoustic cooler were performed. The system performance measured at a fixed 
acoustic power showed that the coefficient of performance of the standing wave thermoacoustic cooler increases as the 
phase angle increases when the stack temperature span is relatively low. The results were consistent with the simulation 
results obtained from DELTAE, a computer code based on linear thermoacoustic theory. Analysis on the temperature 
profiles along the stack showed that the cooling efficiency (COP) of the system could be decreased or increased as the 
phase angle of the acoustic impedance at the driver piston changes depending on the stack temperature spans. 
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1. Introduction 

Electrodynamically driven standing wave ther-
moacoustic coolers use high amplitude sound waves 
generated from a driver to produce cooling energy [1]. 
The driver is properly tuned to maximize its acoustic 
power output at the frequency of interest by adjusting 
its stiffness, mass and piston area. The operating fre-
quency is often chosen to match both mechanical 
resonance frequency of the driver and the acoustic 
resonance frequency of the pressure vessel. It enables 
to vanish both mechanical and acoustic reactances of 
the driver [2-5]. This leads to the maximum elec-
troacoustic efficiency of the driver being achieved.  

There is another way to achieve the maximum elec-
troacoustic efficiency of the driver. In that case, the 
operating frequency of the driver is not the same as 
either the mechanical resonance frequency of the driv-

er or the acoustic resonance frequency of the pressure 
vessel, but close to both. It is properly chosen to van-
ish the summation of the mechanical and acoustic 
reactances. Investigations on the system performances 
with off-resonance conditions are rare. One of the 
reasons why the off-resonance conditions are seldom 
used is that the advantage of doing that compared to 
the resonance conditions is not well known. 

The objective of this paper was to investigate how 
the system efficiency is changed if the driver is oper-
ated off resonance. It was also to find the relationship 
between the phase angle of the acoustic impedance at 
the driver piston and the system efficiency, if any, in 
standing wave thermoacoustic coolers. To achieve the 
goal, both experimental investigations and computer 
simulations were performed. Discussions based on 
mathematical validations are also presented. 
 
2. Experimental observations  

Fig. 1 shows the schematic of the thermoacoustic 
cooler used in this study. It is a half wavelength 
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standing wave thermoacoustic cooler having a mov-
ing magnet driver in one end and a hard wall in the 
other end. A 2.54 cm long rolled stack made of poly-
ester films is sandwiched by two identical fin-end-
tube aluminum heat exchangers. Key dimensions of 
the inside cross-section of the vessel are listed in Ta-
ble 1. 

Temperature, differential temperature, water flow 
rate, acoustic pressure, and acceleration signals were 
measured to evaluate the acoustic power and heat 
exchange rates. Within the water loop through the 
cold-side heat exchanger, a high-accuracy type T 
thermocouple probe (Thermoworks, HT-1) and a 
differential thermopile (Delta-T Company 75X) were 
installed to measure the temperature change of the 
water between inlet and outlet of each exchanger. The 
sensor uncertainties were 0.1 °C and 0.08 °C, respec-
tively. The volume flow rate of water through the heat 
exchanger was measured with a precision axial pad-
dle wheel turbine type flow meter (JLC International 
IR-Opflow). The uncertainty of the flow meter was 
1 % of the measured value. The differential tempera-
ture of water across the heat exchanger was used to 
evaluate the heat delivery to the gas in the cold ex- 

 
Table 1. Key dimensions of the vessel, in millimeters. 
 

Section Upstream 
Diameter 

Downstream 
Diameter Length

Back Cavity 168 163 203 

Driver Housing 89 114 184 
Conical Enlarge-

ment 93 152 85 

Hot Heat 
Exchanger 152 161 25 

Stack 161 161 25 
Cold Heat 
Exchanger 161 152 25 

Conical 
Reduction 152 67 136 

Resonator Tube 67 67 743 

 
 

Leaf Spring
Driver Piston

Stack Cold Heat ExchangerHot Heat Exchanger

Resonator Tube

Conical ReductionConical EnlargementBack Cavity
 

 
Fig. 1. Schematic of the standing wave thermoacoustic cooler. 
Dimensions of the parts are listed in Table 1. 

changer. A piezoelectric dynamic pressure sensor 
(PCB, 102A03) in a port near the piston was used to 
measure driver acoustic pressure. An accelerometer 
(PCB, 353B13) mounted on the carriage of the linear 
motor was used to measure piston acceleration. The 
input acoustic power was calculated based on accel-
erometer and driver pressure signals. More informa-
tion of the experimental setup is available in the lit-
erature [5, 6]. 

The system performance is represented by the coef-
ficient of performance (COP) [7], which is defined as 
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where cQ& is the cooling rate and acW&  is the acoustic 
power input. The COP was estimated with two differ-
ent gas mixtures including 55 % helium – 45 % argon 
mixture and 45 % helium-56 % argon mixture at a 
fixed acoustic power input. 

To check the accuracy of the experimental data, the 
relative uncertainty in the estimated cooling rates, 
was calculated. The heat transfer rate on the cold side 
was estimated by using [8] 

 

wwww TCVQ ∆= && ρ , (2) 
 
where, Q&  is the heat transfer rate, wρ is the density 
of water, wV&  is the volume flow rate of water, Cw is 
the specific heat of water, and wT∆ is the differential 
water temperature across the heat exchanger. Using 
the known uncertainties of the sensors for tempera-
ture, differential temperature, and volume flow rate, 
the relative uncertainty (or fractional uncertainty) of 
the heat transfer rate estimate was calculated from [9] 
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In Eq. (3), δ and Rδ denotes absolute and relative 

uncertainties, respectively. The contribution from the 
density is small compared to other terms; therefore, it 
was neglected.  

Fig. 2 shows the measured COP with respect to the 
phase of the acoustic impedance at the driver. As 
shown in the figure, the COP increased as the phase 
angle increased. For the two different mixtures, the 
results were consistent. The measured data shown in  
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Table 2. Measured data obtained at a mean pressure of 0.69 MPa. 
Data are plotted in Fig. 2. 
 

N 
O 

He 
% 

acW&  
(W) 

cQ&  
(W) COP Twi 

(K) 
Tpilec

(K) 
cRQ&δ

(%) 
1 55 32.5 48.0 1.48 296.6 0.91 4.6 

2 55 30.6 42.3 1.38 296.6 0.80 5.3 

3 55 33.4 42.4 1.27 296.6 0.81 5.2 

4 55 32.3 41.9 1.30 296.7 0.78 5.1 

5 55 29.5 40.8 1.38 296.6 0.78 5.4 

6 55 31.5 46.7 1.48 296.6 0.88 4.4 

7 44 34.4 48.4 1.41 295.5 0.94 4.1 

8 44 35.2 52.3 1.48 295.5 1.02 3.9 

9 44 34.4 44.5 1.29 295.4 0.88 4.6 
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Fig. 2. Measured COP vs. Phase angle of acoustic impedance at 
the driver piston. : 55% helium – 45% argon mixture, O: 44% 
helium – 56 % argon mixture. Data are plotted with error bars. 
Data are listed in Table 2. 

 
Fig. 2 are listed in Table 2. The relative uncertainties 
of estimating the cold-side heat transfer rate were 
within 6 %. 
 
3. Comparison with DELTAE 

The system shown in Fig. 1 was modeled in a 
simulation program called DELTAE [10] based on 
linear thermoacoustic theory to compare the meas-
ured system performances with the predictions from 
the model. The unknowns and boundary conditions in 
DELTAE are defined as guess and target vectors, 
respectively [11]. The target vectors used include the 
stack end gas temperatures, phase angle between 
pressure and velocity at the driver, pressure and ve-
locity amplitudes at the driver, and zero enthalpy flux 
condition at the termination end. The guess vectors  
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Fig. 3. COP vs. Phase angle of acoustic impedance at the driver 
piston from DELTAE simulations. : 55% helium – 45% argon 
mixture, O: 44% helium – 56 % argon mixture. 

 
 
were the mean pressure at the driver, amplitude and 
phase of the pressure at the driver, volume velocity 
amplitude at the driver, and heat transfer rates at both 
heat exchangers. 

Fig. 3 shows the COP predicted from DELTAE 
with respect to the phase of the acoustic impedance at 
the driver piston. The results were consistent with the 
experimental observations. 
 

4. Discussion 

To know why the COP varies with the phase angle 
of the acoustic impedance at the driver, a mathemati-
cal analysis was performed. 

 
4.1 The math 

The COP of a thermoacoustic cooling system can 
be expressed as [11] 
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where H& is the total power flowing along the stack 
which is negative for refrigerators, acW&  is the acous-
tic power input, φ  is the phase angle between acous-
tic pressure and volume velocity, acZ is the acoustic 
impedance defined as the oscillating pressure, P, di-
vided by the oscillating particle volume velocity, U, 

dxdTm  is the slope of the temperature profile along 
the stack. A, B and X are defined as [11] 
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Table 3. Various Properties at the cold end of the stack for data 
sets in Fig. 4. 
 

φ dr (deg) -31.7 2.6 37.4 

1-A 0.3982 0.3948 0.3915 

B -0.4763 -0.4756 -0.4747 

|Zac| (Pa⋅s) 6.73E5 5.84E5 5.07E5 

φ (º) 80.36 81.20 81.93 

sin φ 0.986 0.988 0.990 

tanφ 5.887 6.460 7.058 

dTm/dx -357.1 -303.0 -270.3 
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In Eqs. (5)-(7) mT is the mean temperature, σ  is 

the Prandtl number, β  is the thermal expansion 
coefficient, mρ is the density, pc  is the specific heat, 
ω is the angular frequency, A  is the cross-sectional 
area, K is the thermal conductivity, the subscripts 
ν  and κ  represent viscous and thermal, respec-
tively, f is the spatially averaged thermoviscous 
function, and sε  is a correction for thermal proper-
ties of the solid wall [1]. 

At the cold-end of the stack, ( )A−1  in Eq. (4) is 
always positive because the magnitude of A is known 
to be between 0 and 1 [12]. B  should be always 
negative to yield a positive COP because both X  
and dxdTm  are negative at the cold end [12]. 
Therefore, when the magnitude of dxdTm  in-
creases (steeper in slope), the COP decreases if other 
variables do not change much. 

For the 44 % helium and 56 % argon data in Fig. 3, 
the stack temperature profiles were obtained from 
DELTAE and plotted in Fig 4.  

When the phase angle of the acoustic impedance at 
the driver was -31.7, the magnitude of dxdTm  at 
the cold end of the stack was large and as the phase 
angle increased, it decreased as shown in Fig. 4. This 
is consistent with the observation with Eq. (4). For the  
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Fig. 4. Stack temperature profile vs. distance from driver piston 
with various phase angles of P/U at the driver. The direction of 
the arrow indicates increasing phase angles. O: +37.4°, •: 2.6° , 
: -31.7°. 
 

Stack
Duct1 Duct2

Helmholtz
VolumeHorn

Driver 
Piston

420 mm

Stack
Duct1 Duct2

Helmholtz
VolumeHorn

Driver 
Piston

420 mm
 

 
Fig. 5. Schematic of the standing wave thermoacoustic cooler 
(dimensions in millimeters).  

 
data points in Fig. 4, the variables in Eq. (4) were 
calculated and tabulated in Table 3. 
 
4.2 Validation 

More simulations were performed to fully under-
stand this phenomenon over various operating condi-
tions such as stack lengths and stack temperature 
spans. A standing wave thermoacoustic cooler with a 
quarter wavelength resonator [13] shown in Fig. 5 
was used by varying stack lengths and stack end tem-
perature differences. The mean pressure used was 
1MPa and the working gas was helium. The acoustic 
power input at the driver piston was fixed to 10 W.  

Fig. 6 shows the results with the stack length of 
7.85 cm and four different stack temperature spans. 
The calculated properties obtained for the simulation 
are listed in Table 4. When the stack temperature span 
was 20 K and 40 K (Figs. 6(a) and 6(b)), the abnor-
mal temperature profile along the stack (having a 
positive slope near the hot-side stack end) occurred. 
As the phase angle of the acoustic impedance at the 
driver piston increased, the abnormal temperature 
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profiles became more linear, and the COPs increased 
as shown in Table 4. This is consistent with the re-
sults obtained with the half wavelength standing wave 
thermoacoustic cooler used in this study. 

When the stack temperature span was 60 K, the ab-
normal temperature profile did not occur, and as the 
phase angle increased from -40° to +40°, the tempera-
ture profile became slightly more linear although it 
did not change much. In this case, the COP did not 
change much as the phase angle increased. When the 
stack temperature span was 80K, the temperature 
profile changed slightly more nonlinear having larger 
magnitude of the temperature slope at the hot-side 
stack end than that at the cold-side stack end as the 
phase angle increased from -40° to +40°. In this case, 
the COP decreased as the phase angle increased. 

The simulation result in Table 5 shows the relation 
between the cooling efficiency (COP) and the phase 
angle of the acoustic impedance at the driver for vari-
ous stack lengths and stack temperature spans. For 
three different stack lengths, similar results with those 

in Fig. 6 were obtained. For each stack length, the 
COP increased with the phase angle when the stack 
temperature span was small, and it decreased with the 
phase angle when the stack temperature span was 
large. When the stack end temperature was in be-
tween, the COP did not change much with the phase 
angle. Fig. 7 shows the stack temperature profiles of 
simulation results presented in Table 4. 

To find the relation between the phase angle and 
the stack temperature profile, Equation (4) can be 
rewritten for time harmonic waves as  
 

X
BAWH

dx
dT acm )tan)(( φ+−−

=
1&&

, (8) 

 
where acW&  is the acoustic power. 

In Eq. (8), X is always negative, and therefore 
dTm/dx becomes positive when the numerator be-
comes negative. For a normal condition, 

( )( )φtanBAWac +−1&  is larger than H&  and the 
numerator becomes positive because both terms are 
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Fig. 6. Mean temperature (Tm) vs. distance (x) from driver piston for various stack end differential temperatures (Stack length: 
7.85cm, (a):∆T=20K, (b): ∆T=40K, (c): ∆T=60K, (d): ∆T=80K). The direction of the arrow indicates increasing the phase angle of 
P/U at the driver from -40° to +40° with an increment of 20°.  
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negative. However, the numerator becomes negative 
when H& is large. This means that the total power 
flowing through the stack is large, in other words, the 

cooling load applied to the cold side stack is large.  
For a given length of stack, it seems that there ex-

ists a certain temperature gradient that would make a  

Table 4. Various properties at the hot and cold ends of the stack for data sets in Fig. 6. Stack length is 7.85cm.  
 

∆T (K) Stack φ dr (°)  H& (W) 1-A B tan φ X COP 
-40 -8.63 0.8520 -0.3409 3.1474 -0.0033 0.86 
-20 -9.44 0.8476 -0.3452 3.5352 -0.0042 0.94 
0 -10.02 0.8441 -0.3485 3.8245 -0.0050 1.00 
20 -10.56 0.8405 -0.3518 4.1139 -0.0059 1.06 

Hot 

40 -11.22 0.8356 -0.3562 4.5010 -0.0073 1.12 
-40 -8.63 0.8738 -0.3174 75.9828 -0.0200 0.86 
-20 -9.44 0.8701 -0.3215 65.8195 -0.0220 0.94 
0 -10.02 0.8672 -0.3247 67.0710 -0.0236 1.00 
20 -10.56 0.8641 -0.3280 69.2413 -0.0254 1.06 

20 

Cold 

40 -11.22 0.8600 -0.3323 72.4785 -0.0279 1.12 
-40 -7.56 0.8446 -0.3480 3.6920 -0.0039 0.76 
-20 -8.05 0.8404 -0.3519 4.1335 -0.0049 0.80 
0 -8.36 0.8372 -0.3547 4.4354 -0.0057 0.84 
20 -8.62 0.8339 -0.3576 4.8066 -0.0067 0.86 

Hot 

40 -8.87 0.8296 -0.3614 5.1994 -0.0081 0.89 
-40 -7.56 0.8880 -0.2999 69.4920 -0.0225 0.76 
-20 -8.05 0.8852 -0.3034 76.0919 -0.0247 0.80 
0 -8.36 0.8830 -0.3061 83.4405 -0.0265 0.84 
20 -8.62 0.8807 -0.3088 76.0741 -0.0284 0.86 

40 

Cold 

40 -8.87 0.8777 -0.3123 70.7882 -0.0310 0.89 
-40 -6.08 0.8360 -0.3558 4.4378 -0.0047 0.61 
-20 -6.20 0.8322 -0.3592 4.9282 -0.0058 0.62 
0 -6.22 0.8293 -0.3616 5.2716 -0.0067 0.62 
20 -6.17 0.8264 -0.3641 5.6372 -0.0077 0.62 

Hot 

40 -5.99 0.8226 -0.3672 6.1685 -0.0092 0.60 
-40 -6.08 0.9012 -0.2818 78.2152 -0.0258 0.61 
-20 -6.20 0.8991 -0.2847 74.1121 -0.0283 0.62 
0 -6.22 0.8975 -0.2869 84.9031 -0.0303 0.62 
20 -6.17 0.8959 -0.2890 80.5407 -0.0324 0.62 

60 

Cold 

40 -5.99 0.8938 -0.2917 81.0845 -0.0352 0.60 
-40 -3.91 0.8261 -0.3644 5.5583 -0.0059 0.39 
-20 -3.59 0.8227 -0.3672 6.0637 -0.0072 0.36 
0 -3.26 0.8201 -0.3692 6.4376 -0.0082 0.33 
20 -2.85 0.8177 -0.3712 7.0569 -0.0093 0.29 

Hot 

40 -2.20 0.8145 -0.3737 7.6135 -0.0109 0.22 
-40 -3.91 0.9133 -0.2634 87.1944 -0.0306 0.39 
-20 -3.59 0.9118 -0.2657 73.8230 -0.0372 0.36 
0 -3.26 0.9107 -0.2674 84.8648 -0.0357 0.33 
20 -2.85 0.9096 -0.2690 86.0638 -0.0381 0.29 

80 

Cold 

40 -2.20 0.9082 -0.2710 82.7722 -0.0414 0.22 
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Table 5. Cooling efficiency (COP) for various stack length and 
stack temperature spans. 
 

Stack length (cm) ∆T (K) φ dr (º) COP 
-40 2.80 
-20 2.87 
0 2.93 
20 2.99 

5 

40 3.06 
-40 1.97 
-20 1.97 
0 1.98 
20 1.97 

20 

40 1.97 
-40 0.72 
-20 0.64 
0 0.58 
20 0.51 

1.85 

35 

40 0.41 
-40 1.69 
-20 1.77 
0 1.83 
20 1.89 

10 

40 1.96 
-40 1.13 
-20 1.13 
0 1.13 
20 1.12 

40 

40 1.10 
-40 0.48 
-20 0.41 
0 0.35 
20 0.28 

3.85 

60 

40 0.19 
-40 1.14 
-20 1.21 
0 1.26 
20 1.31 

20 

40 1.37 
-40 0.95 
-20 0.99 
0 1.01 
20 1.02 

40 

40 1.03 
-40 0.50 
-20 0.46 
0 0.42 
20 0.38 

5.85 

70 

40 0.31 

 
linear-like temperature profile across the stack. In that 
case, the COP is not much affected by the phase angle  

of acoustic impedance at the driver. The temperature 
span along the stack is determined by the cooling load 
applied to the cold side stack. As the cooling load gets 
smaller, the stack temperature profile becomes 
nonlinear. The magnitude of the slope at the hot-side 
stack end becomes larger than that at the cold-side 
stack. Nonlinear temperature profiles mean that there 
exist locations in the stack where the thermoacoustic 
heat pumping process from the hot-side to the cold 
side occurs inefficiently. Therefore, the COP gets 
lower than that of the case with a linear stack tem-
perature profile. In that case, as the phase angle in-
creases, the stack temperature profile becomes more 
nonlinear and the COP decreases. Also in that case, 
H&  is small regardless of tan φ, and dTm/dx stays 

negative. This happens when the thermoacoustic 
cooler is mostly insulated and there is no heat load at 
the cold side of the stack. 

However, as the cooling load increases, the tem-
perature span decreases, and H&  becomes larger 
than ( )( )φtanBAWac +−1& . Such a small stack 
temperature span can be commonly encountered in 
reality when the stack is surrounded by highly effec-
tive heat exchangers with relatively large heat load. In 
that case, dTm/dx partly becomes positive near the 
hot-side stack end and the stack temperature profile 
becomes nonlinear. The nonlinear temperature profile 
again makes the COP lower than that of the case with 
a linear stack temperature profile. This time, the COP 
is improved as the phase angle increases. It is because 
if the phase angle of oscillating pressure and particle 
velocity at the driver piston increases, it makes tan φ 
large in the stack, and finally makes the temperature 
profile more linear. 
 

5. Conclusions 

Investigations of the relation between the phase an-
gle of the acoustic impedance at the driver piston and 
the COP were done both experimentally and by simu-
lations using DELTAE. In experiments, it was ob-
served that the COP increases with the phase angle of 
the acoustic impedance at the driver when the stack 
temperature span is relatively small compared with 
the stack length. The result obtained from DELTAE 
simulation was consistent with the experimental result 
when the heat load at the cold side stack was large. 
Analysis of the temperature profiles along the stack 
showed that when the stack temperature span was 
small for a given stack due to large heat load, the 
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stack temperature profile became nonlinear with a 
partial positive temperature gradient. Such nonlinear 
temperature profile became more linear and the COP 
increased as the phase angle of the acoustic imped-
ance at the driver piston increased. When the stack 
temperature span was small for a given stack due to 
small heat load, the stack temperature profile became 
nonlinear but in the other direction than the large 
temperature case. This also decreased the COP as the 
phase angle increased. 
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List of symbols 

A  : Cross sectional area 
fluidA  : Fluid area in stack 

%Ar  : Percentage of argon in He-Ar mixture 
solidA  : Solid area in stack 

COP  : Coefficient of performance 
pc  : Specific heat 

wC  : Specific heat of water 
f  : Spatially averaged thermo-viscous function 
Im  : Imaginary part 

%He  : Percentage of helium in He-Ar mixture 
H&  : Total energy flux in watts 
K  : Thermal conductivity 
P  : Acoustic pressure 

mP  : Mean pressure 
Q&  : Heat transfer rate 

cQ&  : Cold-side heat transfer rate 
Re  : Real part 

pilecT  : Differential temperature across cold-side  
 heat exchanger 

wT  : Temperature of water 
iwT  : Temperature of water at the inlet of the  

 cold-side heat exchanger 
mT  : Mean temperature 

U  : Complex volume velocity 
wV&  : Water volume flow rate 
acW&  : Acoustic power in watts 
acZ  : Acoustic impedance 

β  : Thermal expansion coefficient 
γ  : Specific heat ratio 
∆  : Difference 
δ  : Uncertainty 

QR
&δ  : Relative uncertainty in heat transfer rate 

sε  : Correction for thermal properties of solid  
 wall 

wρ  : Density of water 
σ  : Prandtl number 
ω  : Angular frequency 
φ  : Phase angle of Zac at a position  

drφ  : Phase angle of Zac at the driver piston in  
 degrees 
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